
Tips for an Efficient Workflow

Introduction:

As you’re beginning a research project, you should be structuring your research project
in an organized way, for your future self’s sake, for your coauthor’s sake, and for the
publication journal’s replication RA. Generally, your goal is to create code that takes
input files, and generates all output files, with the click of one “run” button.

In this guide, I will first describe the principles that I use in my research workflow, and
then will include a second part where I will show you how to incorporate them into using
the Kellogg Linux Cluster (for Kellogg affiliates), using my “Relationship Banking” project
as an example. I will have all my code available on Github and the one “manual input
file” (so you can get all of the data yourself, excluding SDC data, and recreate most of
the analysis I have done).

Organizing Folder Structure:

You should set up each project to have a folder structure that can be easily moved (or
cloned by a coauthor). For example there should be a “root” directory. Within that, there
could be a “code” directory, an “data” folder, and “intermediate_data” directory, and an
“output” directory

Tip: Use relative paths when you can! The only path that should be hard coded should
be the “root” directory. Everything else should be relative to the root directory.

Organizing Code Structure:

Your code should be organized into several files, that are split up by what they do. No
matter what, you should have a “master” file, you may have a “data-gathering” file(s),
“data-merging” file(s), data-cleaning file(s), and then analysis file(s). If you have a
project that involves structural estimation or solving models, see the appendix:

Master file:

https://docs.google.com/document/d/1VurAeAX9dzG1tEKwTB9w7SgDxVSQ91kl/edit?usp=drive_link&ouid=103205792902028176828&rtpof=true&sd=true
https://github.com/brandonek15/relationship_pricing

This one master file should be able to run EVERYTHING that you need to run in order
to get from data inputs -> outputs. The additional benefit of doing this is that your code
is organized. You know exactly what order the code needs to run in. Note that you don’t
need to run all code from beginning to end, but you need to be ABLE to do so.

Think about the point of view of someone trying to replicate your file (top Finance
journals are requesting this these days). You want them to be able to just click “run” and
then it spits out all the results.

Below are the master python file and master Stata file

Settings File:

Have a file where you put down all of your settings. These are like “globals” and are the
only things that should be hard coded. I personally like the convention where things that
are “outside” of functions are in upper case, so I know that these are global variables

that are defined in the settings folder. Generally, my settings folder just sets
paths/directories, file locations, and specifies which segments of the code I would like to
run.

Data Gathering File:

As part of any empirical research project, you will be gathering various datasets and
then you will likely be merging them together somehow. I will classify these datasets into

two types, those that you are “given/manually collect” and those that your code
generates.

Data You Generate:

Whenever possible, you should have your code generate your data for you. This will
make updating your data/ replication of your code easy. Examples of this type of data
include

● Data you web scrape
● Data from FRED
● Downloading data from any WRDS series using their python package

o If you ever download WRDS data using the user interface by clicking
buttons, I will be disappointed with you. Terrible for replicability

Below is a piece of my code that downloads from WRDS and saves them

Data You Are Given/Manually Collect:

This type of data are ones that you cannot generate from code. Any dataset that falls in
this category is often a huge pain to update. Examples of this type of data include

● Commercial databases without nice python/R interfaces (SDC Platinum, S&P
Capital IQ)

● Bloomberg data pulls from a Bloomberg terminal
● Data you are given by a data partner

Here is the version of the Chava and Roberts linking table I used in this project and
code used to read it in

Data merging code:

You will likely have various input datasets and now you will need to merge them
together. Depending on how many datasets and how big they are, you have several
options. When you have few datasets and they are small, you can use any languages
merge functionality

Below is the example in Python of joining the Compustat (and Dealscan) files using an
incredible package called IBIS. For a complete description of this package and how to
do more complex merges in a clean way, and relational databases in general, see
appendix.

https://docs.google.com/spreadsheets/d/1wCxvLUfOA2C64O5atMvRLmr-dUubV1sp/edit?usp=sharing&ouid=103205792902028176828&rtpof=true&sd=true

Specifically highlighting the Compustat merge in IBIS (see appendix for a more
thorough description):

For an example of simple merge in Stata, see below.

Data cleaning code:

Data cleaning is extremely important and is basically preparing your data to be used in
analyses. Here you should be making any transformations to your data (winsorizing),
creating any variables necessary for regressions, etc. It is not necessary that this is
done after data is merged, it can also be done before data is merged.

Analysis code:

Your analysis code should ONLY do data analysis. You should NOT be generating new
variables but only running analyses/creating figures.

Below is my code that generates the regression tables relating discount size and
relationship status

Exporting to Overleaf/Latex:

(users of RMarkdown, please ignore. RMarkdown is great, I just don’t use R).

Generally you want to have as little manual touching of latex files as possible. What you
want to do is to have your favorite programming language (Stata for me here) generate
figures and .tex file output that you upload to overleaf, and then have overleaf read in
those raw files. This allows you to create 100 page pdfs with 400 figures and tables
(kidding, not kidding). If you do this, it will allow you to update the figures/tables
relatively easily (just run the code and reupload the output).

See the earlier screenshot to see how everything is exported to a .tex file.

Using an IDE:

If you are doing coding in something like Python or R, please use an IDE (integrated
developer environment). This will make your life so much easier. See Raul’s guide for
more tips.

I use PyCharm. Pycharm has a lot of great functionality that help with debugging, in
particular the debugger or the “calculation” button. Ultimately do your own research, but
please use one. Your future self will thank you!

APPENDIX

Guide to Using Relational Databases:

If you have large datasets or have many datasets to work with, you should use
relational databases for organizational purposes and merging. Relational databases will
help ensure that your joins/merges are occurring properly, and also will allow you to look
at all of the input datasets individually before merging easily. If you have large datasets,
it will also allow you to query subsets of your data efficiently.

For anyone doing empirical work where a ready-to-use dataset is not given to you,
should consider using relational databases for data management. A relationship
database is a set of tables (ideally with some set of identifiers) that you can pull from
and merge together using SQL queries. You may have used SQL queries to get data
from relational databases, but you SHOULD make your own in your research. The end
goal is to make a relatively clean data file with all the relevant information you may need
that you can then use in the statistical programming language of choice (note: relational
databases are NOT good for fuzzy merges)

Why should you use relational databases:

https://docs.google.com/document/d/1VurAeAX9dzG1tEKwTB9w7SgDxVSQ91kl/edit?usp=sharing&ouid=103205792902028176828&rtpof=true&sd=true

● You are creating your own dataset from many individual data files (for example,
web scraping, reading in many excel files as inputs)

● Your data is very big (~ over 5gbs) and you want to only get a subset of it for your
analysis

● You want to cleanly and transparently join/merge across many different data files
o This is particularly relevant for many data files from WRDS

▪ WRDS uses relational databases

Okay so how do you do it? I will walk you through it with an example from my Python
code.

Imagine you want to download Compustat data from WRDS that is spread across many
different tables. In addition, you want to merge on a linking table that will allow you
eventually merge to Dealscan (from Chava and Roberts). What we will do is to
download the data from each individual table, put that data into my own relational
database, then use joins to merge all of the relevant information into one data file. (I will
omit which python modules you will need to import, but that is easily figured out in a
Google search)

First, you will need to create the database file

Where I have defined the name of the SQLITE_FILE previously in “settings.py”.

Now I use WRDS Python module to download three separate tables from WRDS (along
with other functions I have defined)

Where retrieve table is defined below. Each of these “retrieve_table” functions retrieves
a table as a dataframe named “wrds_table” from WRDS and uploads them to the
database I created using the “to_sql” command.

To see how they look in the database, you can view them in a program like DataGrip,
which is free for students. These all have an identifier “gvkey” that I will be joining on
later.

Now let’s merge these together. You can merge these with SQL query syntax, but I find
this unpleasant, so I like to use a package in Python called “IBIS”. IBIS is a query
building package.

First I create a “client”, or a connection to the SQLITE database.

Then I tell this connection to build a query according to my function “merge_compustat”,
execute the query to get the merged datafile, and then output it as a .csv, that I will later
load into STATA. I actually do three separate merges to make three separate output files
(Dealscan, Compustat, and CapitalIQ), but I will only show Compustat because it is
sufficient to show the concept.

IBIS is a tool to build a SQL query by using nice Pandas type syntax. To see an
example, look at the “merge_compustat” function. This is quite flexible, and it allows you
to do many powerful things.

This “loads” in the three tables from the database we uploaded earlier (and the
crosswalk). I start the merged file by using “comp_quarter” and keeping only
observations within the data range I care about. Then I do an inner join on the
“comp_identity” table on the identifier, which is gvkey. I also do the same with the
“ipodate” information. And then do a left join to get the crosswalk information (look up
SQL documentation to understand joins).

Finally, I need to tell it which variables I want at the end of the day, which are all of the
variables from “comp_quarter”, a few variables from “comp_identity”, the “ipodate” from
comp_ipo, and a different identifier (“bcoid”) from the crosswalk,which is used to merge
with Dealscan later on in my research project (in Stata).

In this particular case, you could do all of things within WRDS SAS studio (except for
the Chava Roberts linking table), but it would be much more painful, especially if you
want to incorporate data that isn’t inside of WRDS (like I did with the linking table). You

could also write your own SQL statement that does the exact same thing as well, but
this will be harder (though ChatGPT can help).

Data Exploration Tips:

There are many philosophies about how you should pursue a research project. No
matter which you follow, at some point you want to really “know the data” and the
“stylized facts”. To do this, this will require you to run countless summary statistics and
produce countless figures.

One of the first things I will always do when I am “getting to know” my data is to plot all
outcomes of interest and all control variables, and often split them up by groups of
interest (I personally like kernel densities). This does two things, first it might show
some cool empirical facts that will help you know the world better, and it will also reveal
to you obvious data issues (say that some of your data has a value multiplied by 100).
For example, such exploration led me to see that vertically integrated loans in
commercial mortgages are generally lower risk loans with lower rates and have faster
securitization speed. Doing this led me to my job market paper, as I found some
empirical facts I found interesting and wanted to understand why it was happening.

You may be worried about “data mining.” I am not advocating for data mining, but the
distinction is not always clear. I genuinely want to know what the data says and what the
correlations in the data truly are. And maybe this will lead to cool economics (e.g. my
JM paper), maybe it will be uninteresting economics, or maybe it will be spurious. That
last question is one you will discuss with your advisors and peers to figure out.

Other Workflow tips:

If in your text, you include some summary statistics based off of your data, make sure
that you have code that generates as output to the command line. For example, in my
paper “Bank Relationships and the Pricing of Loans”, we have the following paragraph

These three numbers come directly from this Stata code

https://drive.google.com/file/d/1VwQHZtmIhu1xTu2nkvMf5uSsrWCb4Yde/view

Parallelization:

In your research, you may find yourself needing to run the same procedure many times.
If you are clever in how you write your code and have access to a Linux cluster, you
may be able to use parallelization. Parallelization is the idea of running procedures at
the same time, which speeds up your code’s runtime. In practice, this is done by
submitting many “jobs”, each of them can be run independently of each other. A
common way to do this is to write a batch script that you will run in the command line,
that will submit many jobs.

Below is an example from my job market paper, where I need to solve a dynamic model
for over 20 issuers of CMBS.

This batch script sets the directory to the correct folder, loads python, activates my
Conda environment. Then it loops over all of the issuers that I need to solve the
dynamic model for, and submits at python job “run_dynamic_model_command_line.py”
with the input “$issuer”

The python file “run_dynamic_model_command_line.py” that is called is below:

This program takes in an “issuer” as an argument, and then runs the function
“dynamic_model_solve_main.solve_dynamic_model” for the given issuer (I solve 4
versions of the model, the baseline and three counterfactuals). The beauty of this is that
the dynamic model that one issuer solves is independent of every other issuer, and so I
can do them simultaneously. So if I have 24 issuers, and each model takes 1 hour to
solve, I can solve all of them in 1 hour, instead of 1 day.

Another example where I do parallelization in Stata is below. I had 14 different analysis
that would take a while to run, so instead of just running them one at a time, I had a
batch script that would run all 14 at the same time.

This code runs the “all_analysis.do” file with an input of “i”, where “i” is a number
between 1 and 14. I am only showing 5 of the analyses below.

My opinion on coding languages:

I think that depending on your purpose, different coding languages are useful. Below I
will summarize my opinion on each of the main ones economists use.

Julia – Good for solving macro style models in fast time. Upgrade over Fortran (don’t
learn Fortran), which is also made for solving models fast. I personally don’t use it but
have heard good things.

Python: An incredibly powerful object-oriented programming language. Is good
webscraping, processing data, and doing “data-science” things and machine learning.
Can also do parameter estimation (MLE and GMM) and solve simpler dynamic models.

I use Python extensively, for both data gathering and processing, and for estimation and
solving dynamic models.

R: There is a large overlap between what R can do and what Python can do. R is not an
object-oriented programming language. But it can do the things I have described above
for Python. Additionally, there are a lot of new regression commands that are easy and
fast to use, so if you want to have an entire project in just one language, R is probably
the way to go. (I personally do not like the syntax of R so I don’t use it, but it is quite
powerful)

Matlab: A programming language used for computational stuff (e.g. solving a dynamic
programming model). This is a bad choice for data analysis. Even merging datasets is
hard in Matlab. You shouldn’t use it. If you know matlab, it’s easy to transition to R or
Python, which can do the same things and more. I think the reason it is used is that
people don’t want to learn new languages.

Stata: Great if you already have a relatively clean dataset, or only requires minor
cleaning/merging. Where Stata is excellent is that it has all of the regression and
summary stat tools you need to generate the analysis tables and figures you need. I use
Stata to do reduced form analyses and explore data. I like the figures and esttab
commands much more than Python’s matplotlib. I have heard Stata referred to as the
“Excel for Economists” and I think that is accurate. Excel is actually great for simple
things, just like Stata is. Please don’t ever try to solve a dynamic model in Stata, or do
GMM, or estimate parameters. Only reduced form regression and summary stats.

Estimation or Model Solving Code Organization:

If you are estimating parameters using some sort of a GMM or MLE procedure, you
should structure your code in a similar way (have a master file, and then have programs
that read in the data, and then other programs compute summary statistics). I will use
my CMBS dynamic model code to illustrate.

First you should have code that prepares all of the datasets and inputs you need to
actually estimate demand. In addition to looking cleaner, this will speed up your
procedure because these things only need to be done once! Not every time during your
estimation (see PREPARE_FOR_DEMAND)

Then, you will have code the runs the estimation (see estimate_demand_main)

Finally, you will have code that does something with the estimates (not shown here)

Setting up Git/ Github (relevant files here: “.bashrc”, “.gitconfig”, and “.gitignore”):

You have all heard of Github and you should get in the habit of Git tracking every
research project you do. This is essential when working with collaborators but also
useful if it is just you. Git is a version tracking software that allows you to periodically
“commit” your code to a Git repository. Then if you ever need to go back to an old
version, you can ask Git to bring back an old version for you.

Why should you use Git?

https://drive.google.com/file/d/1gdGtNMx7yrqh0NtVYJBCxWA8lw0cm2-z/view?usp=sharing
https://drive.google.com/file/d/1TA6rfPv6j1bKKa-ELQp9VzzCTDQ4nayl/view?usp=sharing
https://drive.google.com/file/d/1xtoSjkYCr2_Npcs2aAgBQSHFq1QuQEWO/view?usp=sharing

● With multiple people working on the same project, you can easily both code at
the same time and “push” your changes to a centralized Git repository.

● This includes Git’s fantastic tools for merging in multiple edits and dealing with
conflicts in code

● You never have to save files like “regressions_v2”
● You never have to “comment out code just in case I need it later” because you

can just get your old code later
● You can have confidence deleting old code
● When you inevitably do something that breaks your code, you can go back to an

old version that works (this will happen at some point in your career!)

Okay so how do you do it? You first need to set up a project directory, which should
contain a “code” directory. Once you have that code directory, navigate to that directory
using the “cd […]” commands. Once there you will initiate the repo by using the
command “git init”.

Your git repo has now been created. To see the status of it type “git status”. You will see
nothing is being tracked yet. So you need to tell git to start tracking files by typing “git
add […]” where […] is the file name you want tracked. If you want git to track everything
in the directory you can type “git add -A”.

After you have added everything, type “git status” again and git will tell you exactly what
it will start tracking. To start tracking, you will make commits, which are a snapshot of
your files you are tracking. To take the snapshot, type ‘git commit -m “message to your
future self about this commit” ‘.

If you are not working with anyone but yourself, this is enough (though not the best
practice). If you want to work with others or if you want to connect it to Github, you will
need to start “branching”, which basically tells Git that there is a “master” version of the
code repository somewhere and you/others can access that and contribute to it
elsewhere. Github and other sites will have instructions on how to connect your local Git
repository to Github/ make branches.

It is important to ONLY track your code directory in Git. Code files (like .m, .do, .py) are
tiny in terms of the space they take, so it is fine to store countless versions of them in
Git. But you can’t do it with output files and data files. Git is not made for that.

Also, there is a file called a “.gitignore” which you can include in your Git repo (put it
directly where your git repo is) that tells git to not track certain files.

Lastly there is a git configuration file called “.gitconfig” which you should include in your
HOME directory. This allows you to make customizations that make Git look nicer and

that are outside the scope of this document. I would recommend you directly put my
“.gitconfig” file in your home directory.

Estimation or Model Solving Tips:

When coding like this, I find it especially important to have cleaned, well commented,
and blocked code, because you WILL need to debug issues here. You are doing
something quite complex and it’s incredibly easy to make mistakes.

Additionally, how you structure your data is very important here. I personally like to use
pandas data frames because they are intuitive (they allow you to have many variables
in the same object) and also they will ensure you don’t have issues where you have
different objects with different orderings of the index. It also makes your code easier to
read in my opinion. I had to do a SMLE and a pandas dataframe made the coding more
manageable.

The other thing about solving models/estimation is there will be problem-specific
enhancements that you will include in your code that you will have to put in iteratively.
For example, for my job market paper, I had 9 decisions that had to be made by agents,
and one of them was much faster to compute than the other 8, so I would iterate on the
value function, only recomputing the fast one many times, before ultimately recomputing
the other 8 optimal actions. This allowed for much faster convergence.

Please, make sure you are vectorizing your code (pandas will automatically do that for
you).

If you are doing a model that takes a “long time”, then use timers to figure out how to
optimize your code in different sections. For example, if you have a long task, time each
subtask and see where the bottle-neck is (which takes more time). Then figure out how
to make that segment of the code more efficient.

Additional workflow guides:

See Matthew Gentzkow and Jesse Shapiro’s “Code and Data for the Social Sciences: A
Practitioner’s Guide” https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

Sean Higgin’s Best Practices https://seankhiggins.com/code/

https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://seankhiggins.com/code/

